
CS 61A DISCUSSION 5
MUTATION / OBJECT-ORIENTED PROGRAMMING

ANNOUNCEMENTS

• Midterm scores have been released; submit regrade
requests by March 5th.

• Hog composition revisions are due on March 5th.

• My mom’s birthday is on March 5th. Hi mom.

• Maps has been released. Submit by Monday @
11:59pm to get an extra credit point. If you need help,
there’ll be project parties on Thursday and Monday
from 6:30-8:30pm in 247 Cory.

MORE ANNOUNCEMENTS

• We now have “exam prep” office hours. During
these sessions, you’ll work on past exam questions
and then TAs will go over them with you.

• We also have 2X speed discussion sections now –
these will be from 5-6:30 in 3105 Etcheverry.

• Check OK to make sure that your scores for labs
0-3, HWs 1-3, and the Hog project all make sense.

WHY ARE THERE SO MANY
ANNOUNCEMENTS?

• There’ll be a guerrilla section on trees, linked lists,
and mutation on Saturday from 12-3 in 247 Cory.

• There is no lecture on Friday. I do not know why.

• Free one-on-one tutoring is now available. Sign up
on Friday at 3:30pm on Piazza.

- Sigmoid

“Softmax softmax softmax softmax softmax
softmax softmax softmax softmax softmax

softmax softmax softmax softmax”

MUTATION
PYTHON MEETS THE X-MEN

MUTATION: CHANGING THE
ACTUAL OBJECT IN MEMORY

• as opposed to, say, creating a copy of an object

LIST MUTATION

• lst[i] = elt
• puts elt into the list at index i

• lst1 += lst2
• extends lst1 by the list lst2

• append(elt)
• adds elt to the end of the list

• insert(i, elt)
• adds elt to the list at index i

• remove(elt)
• removes elt from the list

• pop(i)
• removes and returns the item at index i

OBJECT-ORIENTED
PROGRAMMING
BRINGING THE BOURGEOISIE TO PYTHON

DO YOU LOVE
ABSTRACTION?
IF SO, YOU’LL LOVE
OBJECT-ORIENTED
PROGRAMMING.

IF NOT, WHY ARE
YOU HERE? (JK)

ABSTRACTION
MEANS THAT
YOU HAVE TO
THINK LESS
YOU DON’T
ALWAYS NEED ALL
THE DETAILS.

BASIC IDEA:
MODEL REALITY (OR FANTASY… YOUR
CHOICE) USING OBJECTS.

THEN YOU CAN THINK OF YOUR DATA AS
WHOLESOME ENTITIES, WHICH WILL
HOPEFULLY HELP MAKE SENSE OF THINGS.

OOP IS REALLY JUST A FORMALIZED
VERSION OF DATA ABSTRACTION.

OBJECTS
ARE BASED AROUND CLASSES

• A class is like the type of an object. It’s the
blueprint that defines object attributes.

• An object is an instance of a class. Objects are
created using <ClassName>(…), which calls
<ClassName>’s __init__ method.

• In the OOP paradigm, a constructor is
implemented as the __init__ method, which
creates an object. In it, we initialize relevant data.

THINGS TO KNOW

• Instance attributes are attributes specific to an instance.
(Methods are functions specific to an instance.)

• Class attributes are attributes specific to a class.

• You can access instance attributes and class attributes
via dot notation:
• <object or class>.<attribute>

• If <object or class> is an object and <attribute> is the name of both
an instance attribute and a class attribute, dot notation will prioritize the
instance attribute.

SELF

• self is what you should associate with objects (aka instances).

• If you have a method defined with arguments (self, …), it’s an
instance method.

• self is always bound to a specific object instance. This happens
automatically when an instance method is called or accessed using
dot notation.

• To clarify: if you’ve got a method with an object on the left of the dot
(as in obj.method), then self – or whatever the first formal
parameter is – has already been given the value of obj!

• If you have a class on the left, though, nothing is automatically bound.

INHERITANCE

• Inheritance is another way in which OOP models the real world.

• A subclass is a more specific version of a parent class.

• (A Square is a Rectangle, which is a Shape. A Car is a Vehicle,
and so is a Bus.)

• Subclasses inherit all of the methods and attributes of the
parent class. They can also override or add more attributes.

• All classes are derived from object, which contains a few
methods common to all classes (__repr__, __str__, etc.).

